Exercise 3

Use residues to evaluate the improper integrals in Exercises 1 through 8.

$$
\begin{gathered}
\int_{0}^{\infty} \frac{\cos a x}{\left(x^{2}+b^{2}\right)^{2}} d x \quad(a>0, b>0) . \\
\text { Ans. } \frac{\pi}{4 b^{3}}(1+a b) e^{-a b}
\end{gathered}
$$

Solution

The integrand is an even function of x, so the interval of integration can be extended to $(-\infty, \infty)$ as long as the integral is divided by 2 .

$$
\int_{0}^{\infty} \frac{\cos a x}{\left(x^{2}+b^{2}\right)^{2}} d x=\int_{-\infty}^{\infty} \frac{\cos a x}{2\left(x^{2}+b^{2}\right)^{2}} d x
$$

In order to evaluate the integral, consider the corresponding function in the complex plane,

$$
f(z)=\frac{e^{i a z}}{2\left(z^{2}+b^{2}\right)^{2}},
$$

and the contour in Fig. 93. Singularities occur where the denominator is equal to zero.

$$
\begin{gathered}
\left(z^{2}+b^{2}\right)^{2}=0 \\
z^{2}+b^{2}=0 \\
z= \pm i b
\end{gathered}
$$

The singular point of interest to us is the one that lies within the closed contour, $z=i b$.

Figure 1: This is Fig. 93 with the singularity at $z=i b$ marked.
According to Cauchy's residue theorem, the integral of $e^{i a z} /\left[2\left(z^{2}+b^{2}\right)^{2}\right]$ around the closed contour is equal to $2 \pi i$ times the sum of the residues at the enclosed singularities.

$$
\oint_{C} \frac{e^{i a z}}{2\left(z^{2}+b^{2}\right)^{2}} d z=2 \pi i \operatorname{Res}_{z=i b} \frac{e^{i a z}}{2\left(z^{2}+b^{2}\right)^{2}}
$$

This closed loop integral is the sum of two integrals, one over each arc in the loop.

$$
\int_{L} \frac{e^{i a z}}{2\left(z^{2}+b^{2}\right)^{2}} d z+\int_{C_{R}} \frac{e^{i a z}}{2\left(z^{2}+b^{2}\right)^{2}} d z=2 \pi i \underset{z=i b}{\operatorname{Res}} \frac{e^{i a z}}{2\left(z^{2}+b^{2}\right)^{2}}
$$

The parameterizations for the arcs are as follows.

$$
\begin{array}{rll}
L: & z=r, & r=-R \quad \rightarrow \quad r=R \\
C_{R}: & z=R e^{i \theta}, & \theta=0 \quad \rightarrow \quad \theta=\pi
\end{array}
$$

As a result,

$$
\int_{-R}^{R} \frac{e^{i a r}}{2\left(r^{2}+b^{2}\right)^{2}} d r+\int_{C_{R}} \frac{e^{i a z}}{2\left(z^{2}+b^{2}\right)^{2}} d z=2 \pi i \operatorname{Res}_{z=i b} \frac{e^{i a z}}{2\left(z^{2}+b^{2}\right)^{2}} .
$$

Take the limit now as $R \rightarrow \infty$. The integral over C_{R} consequently tends to zero. Proof for this statement will be given at the end.

$$
\int_{-\infty}^{\infty} \frac{e^{i a r}}{2\left(r^{2}+b^{2}\right)^{2}} d r=2 \pi i \operatorname{Res}_{z=i b} \frac{e^{i a z}}{2\left(z^{2}+b^{2}\right)^{2}} .
$$

The denominator can be written as $2\left(z^{2}+b^{2}\right)^{2}=2(z+i b)^{2}(z-i b)^{2}$. From this we see that the multiplicity of the $z-i b$ factor is 2 . The residue at $z=i b$ can then be calculated by

$$
\operatorname{Res}_{z=i b} \frac{e^{i a z}}{2\left(z^{2}+b^{2}\right)^{2}}=\frac{\phi^{(2-1)}(i b)}{(2-1)!}=\phi^{\prime}(i b),
$$

where $\phi(z)$ is equal to $f(z)$ without the $z-i b$ factors.

$$
\phi(z)=\frac{e^{i a z}}{2(z+i b)^{2}}
$$

Take a derivative of it to find $\phi^{\prime}(z)$.
$\phi^{\prime}(z)=\frac{e^{i a z}(i a z-a b-2)}{2(z+i b)^{3}} \Rightarrow \phi^{\prime}(i b)=\frac{e^{i a(i b)}[i a(i b)-a b-2]}{2(2 i b)^{3}}=\frac{e^{-a b}(-2 a b-2)}{16 i^{3} b^{3}}=\frac{e^{-a b}(a b+1)}{8 i b^{3}}$
So then

$$
\operatorname{Res}_{z=i b} \frac{e^{i a z}}{2\left(z^{2}+b^{2}\right)^{2}}=\frac{e^{-a b}(1+a b)}{8 i b^{3}}
$$

and

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{e^{i a r}}{2\left(r^{2}+b^{2}\right)^{2}} d r & =2 \pi i\left[\frac{e^{-a b}(1+a b)}{8 i b^{3}}\right] \\
\int_{-\infty}^{\infty} \frac{\cos a r+i \sin a r}{2\left(r^{2}+b^{2}\right)^{2}} d r & =\frac{\pi}{4 b^{3}}(1+a b) e^{-a b} \\
\int_{-\infty}^{\infty} \frac{\cos a r}{2\left(r^{2}+b^{2}\right)^{2}} d r+i \int_{-\infty}^{\infty} \frac{\sin a r}{2\left(r^{2}+b^{2}\right)^{2}} d r & =\frac{\pi}{4 b^{3}}(1+a b) e^{-a b} .
\end{aligned}
$$

Match the real and imaginary parts of both sides.

$$
\int_{-\infty}^{\infty} \frac{\cos a r}{2\left(r^{2}+b^{2}\right)^{2}} d r=\frac{\pi}{4 b^{3}}(1+a b) e^{-a b} \quad \text { and } \quad \int_{-\infty}^{\infty} \frac{\sin a r}{2\left(r^{2}+b^{2}\right)^{2}} d r=0
$$

Therefore, changing the dummy integration variable to x,

$$
\int_{0}^{\infty} \frac{\cos a x}{\left(x^{2}+b^{2}\right)^{2}} d x=\frac{\pi}{4 b^{3}}(1+a b) e^{-a b}
$$

The Integral Over C_{R}

Our aim here is to show that the integral over C_{R} tends to zero in the limit as $R \rightarrow \infty$. The parameterization of the semicircular arc in Fig. 93 is $z=R e^{i \theta}$, where θ goes from 0 to π.

$$
\begin{aligned}
\int_{C_{R}} \frac{e^{i a z}}{2\left(z^{2}+b^{2}\right)^{2}} d z & =\int_{0}^{\pi} \frac{e^{i a R e^{i \theta}}}{2\left[\left(R e^{i \theta}\right)^{2}+b^{2}\right]^{2}}\left(R i e^{i \theta} d \theta\right) \\
& =\int_{0}^{\pi} \frac{e^{i a R(\cos \theta+i \sin \theta)}}{\left(R^{2} e^{i 2 \theta}+b^{2}\right)^{2}}\left(\frac{R i e^{i \theta}}{2} d \theta\right) \\
& =\int_{0}^{\pi} \frac{e^{i a R \cos \theta} e^{-a R \sin \theta}}{\left(R^{2} e^{i 2 \theta}+b^{2}\right)^{2}}\left(\frac{R i e^{i \theta}}{2} d \theta\right)
\end{aligned}
$$

Now consider the integral's magnitude.

$$
\begin{aligned}
&\left|\int_{C_{R}} \frac{e^{i a z}}{2\left(z^{2}+b^{2}\right)^{2}} d z\right|=\left|\int_{0}^{\pi} \frac{e^{i a R \cos \theta} e^{-a R \sin \theta}}{\left(R^{2} e^{i 2 \theta}+b^{2}\right)^{2}}\left(\frac{R i e^{i \theta}}{2} d \theta\right)\right| \\
& \leq \int_{0}^{\pi}\left|\frac{e^{i a R \cos \theta} e^{-a R \sin \theta}}{\left(R^{2} e^{i 2 \theta}+b^{2}\right)^{2}}\left(\frac{R i e^{i \theta}}{2}\right)\right| d \theta \\
&=\int_{0}^{\pi} \frac{\left|e^{i a R \cos \theta}\right|\left|e^{-a R \sin \theta}\right|}{\left|\left(R^{2} e^{i 2 \theta}+b^{2}\right)^{2}\right|}\left|\frac{R i e^{i \theta}}{2}\right| d \theta \\
&=\int_{0}^{\pi} \frac{e^{-a R \sin \theta}}{\left|R^{2} e^{i 2 \theta}+b^{2}\right|^{2}} \frac{R}{2} d \theta \\
& \leq \int_{0}^{\pi} \frac{e^{-a R \sin \theta}}{\left(\left|R^{2} e^{i 2 \theta}\right|-\left|b^{2}\right|\right)^{2}} \frac{R}{2} d \theta \\
&=\int_{0}^{\pi} \frac{e^{-a R \sin \theta}}{\left(R^{2}-b^{2}\right)^{2}} \frac{R}{2} d \theta \\
&=\int_{0}^{\pi} \frac{e^{-a R \sin \theta}}{\left(1-\frac{b^{2}}{R^{2}}\right)^{2}} \frac{d \theta}{2 R^{3}}
\end{aligned}
$$

Now take the limit of both sides as $R \rightarrow \infty$.

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{e^{i a z}}{2\left(z^{2}+b^{2}\right)^{2}} d z\right| \leq \lim _{R \rightarrow \infty} \int_{0}^{\pi} \frac{e^{-a R \sin \theta}}{\left(1-\frac{b^{2}}{R^{2}}\right)^{2}} \frac{d \theta}{2 R^{3}}
$$

Because the limits of integration do not depend on R, the limit may be brought inside the integral.

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{e^{i a z}}{2\left(z^{2}+b^{2}\right)^{2}} d z\right| \leq \int_{0}^{\pi} \lim _{R \rightarrow \infty} \frac{e^{-a R \sin \theta}}{\left(1-\frac{b^{2}}{R^{2}}\right)^{2}} \frac{d \theta}{2 R^{3}}
$$

Since θ lies between 0 and π, the sine of θ is positive. a is also positive. Thus, the exponent of e tends to $-\infty$, and the integral tends to zero.

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{e^{i a z}}{2\left(z^{2}+b^{2}\right)^{2}} d z\right| \leq 0
$$

The magnitude of a number cannot be negative, and only zero has a magnitude of zero. Therefore,

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{e^{i a z}}{2\left(z^{2}+b^{2}\right)^{2}} d z\right|=0 \rightarrow \lim _{R \rightarrow \infty} \int_{C_{R}} \frac{e^{i a z}}{2\left(z^{2}+b^{2}\right)^{2}} d z=0 .
$$

